SparseHC: A Memory-efficient Online Hierarchical Clustering Algorithm
نویسندگان
چکیده
Computing a hierarchical clustering of objects from a pairwise distance matrix is an important algorithmic kernel in computational science. Since the storage of this matrix requires quadratic space with respect to the number of objects, the design of memory-efficient approaches is of high importance to this research area. In this paper, we address this problem by presenting a memory-efficient online hierarchical clustering algorithm called SparseHC. SparseHC scans a sorted and possibly sparse distance matrix chunk-by-chunk. Meanwhile, a dendrogram is built by merging cluster pairs as and when the distance between them is determined to be the smallest among all remaining cluster pairs. The key insight used is that for finding the cluster pair with the smallest distance, it is unnecessary to complete the computation of all cluster pairwise distances. Partial information can be utilized to calculate a lower bound on cluster pairwise distances that are subsequently used for cluster distance comparison. Our experimental results show that SparseHC achieves a linear empirical memory complexity, which is a significant improvement compared to existing algorithms.
منابع مشابه
MLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملExploiting parallelism to support scalable hierarchical clustering
A distributed memory parallel version of the group average Hierarchical Agglomerative Clustering algorithm is proposed to enable scaling the document clustering problem to large collections. Using standard message passing operations reduces interprocess communication while maintaining efficient load balancing. In a series of experiments using a subset of a standard TREC test collection, our par...
متن کاملEfficient algorithms for exact hierarchical clustering of huge datasets: Tackling the entire protein space
Motivation: UPGMA (average-linkage clustering) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. UPGMA however, is a complete-linkage method, in the sense that all edges between data points are needed in memory. Due to this prohibitive memory requirement UPGMA is not scalable for very large datasets. Results: We present novel memory-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014